# Update on NCPT and SCRI Acrylamide Project

NPC Summer Meeting SCRI SCPT Subcommittee meeting Walla, Walla, WA, June 25, 2013

### Update on acrylamide and human health

- Neurotoxicity
- Carcinogenesis
- Reproductive and developmental defects

#### **Expanded proposition 65 warning**

### **OEHHA**

Office of Environmental Health Hazard Assessment

Acrylamide [2011]

Acrylamide is on the Proposition 65 list of chemicals known to the state to cause cancer or reproductive toxicity (such as birth defects and other reproductive harm).

# Research on prenatal development and acrylamide

Birth Weight, Head Circumference, and Prenatal Exposure to Acrylamide from Maternal Diet: The European Prospective Mother—Child Study (NewGeneris)

Environmental Health Perspectives 2012 vol. 120 (12) pp. 1739-1745

#### **Conclusions of the authors:**

- Dietary exposure to acrylamide was associated with reduced birth weight and head circumference.
- Consumption of specific foods during pregnancy was associated with higher acrylamide exposure in utero.
- If confirmed, these findings suggest that dietary intake of acrylamide should be reduced among pregnant women.

# Chip acrylamide content in 20 European countries



SJ Powers, et al Food Addit Contam A, 2013

### Chip acrylamide content in trial lines and in checks



### Chips made from Lamoka had reduced amounts of acrylamide



### Long-term storage potential of advanced chip clones



#### Fast Track Chip acrylamide



#### **Fry Protocol**

- 340 F for 2 min 15 s
- Test moisture content
  - Fluctuations sample to sample in moisture content
  - Time has proven more accurate method for determining moisture content
- Still processing 2013 SFA
- Merge storage data into single database

# Bin-scale evaluation of Fast Track clones

#### Lamoka

- Bin 4, stored at 48.5F until 6/4
- Bin 5, Stored at 48F until 3/15
- Both processed better than standards
- Issues with bubbling
- Issues with black heart and soft rot (manageable)



Standard

# Bin-scale evaluation of Fast . Nicolet Track clones (cont)

- Bin 6, stored at 48.5 until 6/4
- Processed better than standards
- Less consistent long-term storage
- Stem end resistant







#### SFA Chip acrylamide



#### SFA Chip acrylamide



### Chip acrylamide decreases as chip lightness increases



### Low acrylamide in chips may require low asparagine in tubers

- Reducing sugars are already very low in chip-processing lines
- Asparagine is a new breeding target
- First crosses to introduce the lowasparagine trait have been made

# Acrylamide is formed from reducing sugars and asparagine



Define the landscape of reducing sugars and amino acids that produce low acrylamide products

### Requirements for asparagine in low-acrylamide potato





Chawla et al 2012, Plant Biotech J

### **Asparagine targets**

Tuber asparagine of 2.5 mg g<sup>-1</sup> dry weight

Asparagine ~10% of total amino acids

#### Asparagine in US potatoes



# Markers are being identified in multiple mapping populations



Increase likelihood of identifying widely applicable markers linked to high value traits

### Developing markers for low asparagine in tubers

- Tundra x Kalkaska mapping population developed in SolCAP
- Increased priority for research on tuber asparagine
- Quantified asparagine in 200 clones x 2 replicates for use in developing breeding targets

# Genetic Assessment of Trial Clones

- Genotype every clone in the trials
  - \$80-100 per clone
  - Price is dropping
  - 5,000 + molecular markers
- Analyze relationship of markers to key traits
  - Qualitative traits strong signal
  - Quantitative traits low signal across numerous clones
- Most rapidly evolving genetic research

# Update on stem-end chip defect research

Multi-location field trials

Controlled environment trials

#### Sensitivity to stem-end defects

| Variety     | Average defect score | Letters |
|-------------|----------------------|---------|
| Atlantic    | 0.73                 | Α       |
| Megachip    | 0.59                 | АВ      |
| Snowden     | 0.50                 | ABC     |
| Lamoka      | 0.45                 | ABC     |
| Pike        | 0.41                 | ВС      |
| Nicolet     | 0.41                 | ВС      |
| Harley      | 0.37                 | ВС      |
| MSL292-A    | 0.31                 | С       |
| Accumulator | 0.28                 | С       |

#### Lamoka

















the the the

0.5







#### Tuber disease susceptibility screens

- 3 Diseases:
  - Late Blight (Phytophthora infestans)
  - Pink Rot (*Phytopthora erythroseptica*)
  - Soft Rot (Pectobacterium carotovorum var. carotovora)
- Tubers wounded, inoculated, and placed in humidity chambers with unique conditions favorable for the development of each disease
- After an appropriate length of time based on disease, tubers were cut in half through the inoculation sites
- The amount of infection of the inner tissue was measured as a percent of the cut inner surface area

#### **Spacing Trials**

- Evaluated effects of spacing on yield and size distribution
  - Targeted 2 4" range
  - Relationship to yield
- 4 replications
- 6, 9, 12" in row spacing for most clones

#### W2324-1 Yields 2005

| Treatment Variety & In-row spacing |     | Total yield | US #1 | B (< 2 oz)  Cwt/A | Cull Cwt/A |
|------------------------------------|-----|-------------|-------|-------------------|------------|
|                                    |     | (Cwt/acre)  | Cwt/A |                   |            |
| Atlantic                           | 9"  | 605.6       | 541.6 | 12.7              | 51.4       |
| Atlantic                           | 12" | 583.8       | 512.2 | 7.5               | 64.0       |
| Atlantic                           | 16" | 576.1       | 488.1 | 9.3               | 78.7       |
| W2324-1                            | 9"  | 607.9       | 558.5 | 11.9              | 37.5       |
| W2324-1                            | 12" | 590.6       | 528.9 | 8.4               | 53.2       |
| W2324-1                            | 16" | 543.0       | 496.6 | 11.5              | 35.0       |
|                                    | LSD | NS          | NS    | NS                | NS         |

#### W2324-1 Size Profile

| Treat                    | ment | Size grade (% of US #1 yield) |        |         |          |          |        |
|--------------------------|------|-------------------------------|--------|---------|----------|----------|--------|
| Variety & In-row spacing |      | 2-4 oz                        | 4-6 oz | 6-10 oz | 10-13 oz | 13-16 oz | >16 oz |
| Atlantic                 | 9"   | 16.0                          | 23,0   | 40.3    | 12.9     | 4.4      | 3.4    |
| Atlantic                 | 12"  | 13,7                          | 19.3   | 39.0    | 15.9     | 7.0      | 5.2    |
| Atlantic                 | 16"  | 10,2                          | 14.9   | 39.5    | 20.2     | 9.0      | 6.3    |
| W2324-1                  | 9"   | 13.4                          | 16.4   | 39.2    | 18.1     | 8,8      | 4.2    |
| W2324-1                  | 12"  | 9,8                           | 12.8   | 41.6    | 19.2     | 9.8      | 6.9    |
| W2324-1                  | 16"  | 7.9                           | 12.6   | 41.6    | 21.3     | 10.9     | 5.8    |
|                          |      |                               |        |         |          |          |        |
|                          | LSD  | NS                            | NS     | NS      | NS       | NS       | NS     |

#### Snowden



#### Lamoka



#### Southern Harvest Management

- Manage chemical maturity of the potato crop
- Duration of harvest
  - Rate of maturation
  - Delay in over maturation
- Evaluated digs from late bulking through 6 weeks
- Evaluate sucrose and glucose
- 3-4 sites